PHYSICAL CHEMISTRY

DPP No. 38

Total Marks: 31

Max. Time: 35 min.

(D) T = 27.3 K

(D) P/6

M.M., Min.

Topic: Chemical Equilibrium

(A) P/2

5.

Type of Questions

Single choice Objective ('-1' negative marking) Q.1 to Q.5 (3 marks, 3 min.) [15, 15]

Subjective Questions ('-1' negative marking) Q.6 to Q.9 (4 marks, 5 min.) [16, 20]

1. For the equilibrium $PCI_{s}(g) \rightleftharpoons PCI_{s}(g) + CI_{s}(g)$ in a closed vessel, K_{s} is found to be double of K_{s} . This is attained when:

(A) T = 2 K(B) T = 12.18 K(C) T = 24.36 K

 K_p / K_c for the reaction $CO(g) + \frac{1}{2}O_2(g) \rightleftharpoons CO_2(g)$ will be: 2.

(B) P/3

(C) $\frac{1}{\sqrt{RT}}$ (B) √RT (A) 1(D) R T

3. For the reaction : N_2O_4 (g) \rightleftharpoons 2NO₂(g) at 360 K, the value of $K_c = 0.4$ mole lit⁻¹. The value of K_D for the reaction at the same temperature would be:

(C) 1.2×10^2 atm (A) 12 atm (B) 1.2 atm (D) 1.2×10^{-3} atm

4. Starting with one mole of nitrogen and 3 moles of hydrogen, at equilibrium 50% of each had reacted according to the reaction : $N_2(g) + 3H_2(g) \Longrightarrow 2NH_2(g)$

(C) P/4

If the equilibrium pressure is P, the partial pressure of hydrogen at equilibrium would be:

For which of the following equilibria, is $K_p = K_c$: (B) $CH_4(g) + H_2O(g) \rightleftharpoons CO(g) + 3H_2(g)$ (A) $2H_2(g) + O_2(g) \rightleftharpoons 2H_2O(g)$

(C) $N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$ (D) $COCl_2(g) \rightleftharpoons CO(g) + Cl_2(g)$

For the following chemical equation, write expression for equilibrium constants K_c and K_p 6. $2NO_{2}(g) \rightleftharpoons N_{2}O_{4}(g)$ Also write their proper units.

 PCI_5 dissociates into PCI_3 and CI_2 in a 2 L flask at about 600°C. At equilibrium, mixture is found to contain 7. 1 mole PCI₅ and 2 moles each of PCI₃ and CI₂. Calculate:

- (i) equilibrium molar concentrations.
- (ii) equilibrium mole fractions.

(iii) equilibrium constant K_{c} for the chemical equilibrium : $PCI_{5}(g) \rightleftharpoons PCI_{3}(g) + CI_{5}(g)$

8. For an equilibrium A (g) + 2B (g) \rightleftharpoons 2C (g) + D (g), A and B are mixed in a reaction vesel at 300 K. The initial concentration of B was 1.5 times the initial concentration of A. After the equilibrium, the equilibrium concentrations of A and D are same. Calculate K_c for the given reaction .

9. n mole of PCI₃ and n mole of CI₂ are allowed to react at constant temperature T to have a total equilibrium pressure P, as : $PCI_3(g) + CI_2(g) \Longrightarrow PCI_5(g)$ If y mole of $PCI_{\scriptscriptstyle 5}$ are formed at equilibrium, find $K_{\scriptscriptstyle P}$ for the given reaction.

Answer Kev

DPP No. #38

6.
$$K_c = \frac{[N_2O_4]}{[NO_2]^2} = \left(= \frac{\text{mol } L^{-1}}{(\text{mol } L^{-1})^2}, K_c \text{ has unit of } L \text{mol}^{-1} \right)$$
 $K_p = \frac{p_{N_2O_4}}{p_{NO_2}^2} \left(= \frac{\text{atm}}{\text{atm}^2}, K_p \text{ has unit of } \text{atm}^{-1} \right)$

$$\label{eq:kp} \textbf{K}_{p} = \ \frac{\textbf{p}_{N_{2}O_{4}}}{\textbf{p}_{NO_{2}}^{2}} \ \left(= \frac{\text{atm}}{\text{atm}^{2}} . \textbf{K}_{p} \, \text{has unit of atm}^{-1} \right)$$

7. (i)
$$[PCI_5] = 0.5 \text{ mol } L^{-1}$$
; $[PCI_3] = 1.0 \text{ mol } L^{-1}$; $[CI_2] = 1.0 \text{ mol } L^{-1}$ (ii) $X_{PCI_5} = 0.2$; $X_{PCI_3} = 0.4$; $X_{CI_2} = 0.4$

8.
$$K_c = 4.0.$$
 9. $\frac{(2n-y)y}{(n-y)^2.P}$

nts & Solu

DPP No. #38

1.
$$K_p = K_c (RT)^{\Delta n}$$

 $2K_c = K_c (RT)^{\Delta n}$
 $2 = (RT)^1$

$$T = \frac{2}{0.0821} = 24.36 \text{ K}$$

4.
$$N_2$$
 + $3H_2$ \rightleftharpoons $2NH_3$
 1 3 0 0 1.5 1

$$P_{H_2} = \frac{1.5}{3}P = P/2$$

6.
$$2NO_2 \rightleftharpoons N_2O_4$$

$$K_c = \frac{[N_2O_4]}{[NO_2]^2} = \left[= \frac{\text{mol L}^{-1}}{(\text{molL}^{-1})^2}, K_c \text{ has unit of L mol}^{-1} \right]$$

$$K_p = \frac{p_{N_2O_4}}{p_{NO_2}^2} \left[= \frac{atm}{atm^2}, K_p \text{ has unit of } atm^{-1} \right]$$

(Since mole fraction is itself unitless hence, K_x is also unitless)

7. (i) Molar concentrations:

$$[PCI_5] = \frac{mol}{L} = \frac{1}{2} = 0.5 \text{ mol } L^{-1}$$

$$[PCI_3] = \frac{2}{2} = 1.0 \text{ mol L}^{-1}$$

$$[Cl_2] = \frac{2}{2} = 1.0 \text{ mol } L^{-1}$$

(ii) Mole fractions:

Total moles at equilibrium = 1 + 2 + 2 = 5

$$X_{PCI_{5}} = \frac{n_{PCI_{5}}}{n_{total}} = \frac{1}{5} = 0.2$$

$$X_{PCI_{3}} = \frac{n_{PCI_{3}}}{n_{total}} = \frac{2}{5} = 0.4$$

$$X_{CI_2} = \frac{n_{CI_2}}{n_{total}} = \frac{2}{5} = 0.4$$

(iii) Equilibrium constants:

$$K_c = \frac{[PCl_3][Cl_2]}{[PCl_5]} = \frac{1 \times 1}{0.5} = 2 \text{ (mol L}^{-1})^{-1} = 2 \text{ L mol}^{-1}$$

8.
$$K_c = 4.0$$
.

9.
$$PCI_{3} + CI_{2} \Longrightarrow PCI_{5}$$

$$t = 0 \quad n \quad n \quad 0$$

$$t = teq. \quad n-y \quad n-y \quad y$$

$$K_{p} = \frac{y}{(n-y)(n-y)} \left[\frac{P}{2n-y}\right]^{-1}$$

$$K_{p} = \frac{(2n-y)y}{(n-y)^{2}P}$$

